Part Number Hot Search : 
JC549 APM4804 15KPA90 MAX8660 SD200 MC68HC9 AMD27C64 A471M
Product Description
Full Text Search
 

To Download APA2057AQBI-TRL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 a n p e c r e s e r v e s t h e r i g h t t o m a k e c h a n g e s t o i m p r o v e r e l i a b i l i t y o r m a n u f a c t u r a b i l i t y w i t h o u t n o t i c e , a n d a d v i s e c u s t o m e r s t o o b t a i n t h e l a t e s t v e r s i o n o f r e l e v a n t i n f o r m a t i o n t o v e r i f y b e f o r e p l a c i n g o r d e r s . 2.4w stereo audio power amplifier (with gain setting) & capfree headphone driver a p a 2 0 5 7 a the apa2057a is a monolithic integrated circuit, which combines a stereo power amplifier and a stereo output capacitor-less headphone amplifier. t h e s t e r e o p o w e r a m p l i f i e r p r o v i d e s 1 9 - s t e p s g a i n s e t t i n g f o r f l e x i b l e a p p l i c a t i o n . the headphone amplifier is ground-refer- enc e output, and no nee d the output capacitors for dc blocking. the advantag es of eliminating the output ca- pacitor are saving the cost, pcb?s space and component height. both t he de-pop circuitry and the thermal shutdow n protection circuitry are integrated in the apa2057a, which reduces pops and clicks noise during power on/ off and in shutdown mode. thermal shutdown protects the chip from being destroyed by over-temperature failure. to simplify the audio system design in notebook computer applications, th e apa2057a provides the in- ternal gain setting, and the se features can minimize components and pcb area. t he apa 2057a is available in both tssop-28p and tqfn5 x5-28 packages. both packages are character- ized by space saving and thermal efficiency. f e a t u r e s g e n e r a l d e s c r i p t i o n a p p l i c a t i o n s note book pcs lcd monitor o p e r a t i n g v o l t a g e ? h v d d = 3 . 0 ~ 3 . 6 v ? v d d = 4 . 5 ~ 5 . 5 v no output capacitor at headphone amplifier required meeting vista requirement low distortion amp mode ? t h d + n = 5 6 d b , a t v d d = 5 v , r l = 4 w, p o =1.5w ? t h d + n = 6 4 d b , a t v d d = 5 v , r l = 8 w, p o =0.9w hp mode ? t h d + n = 7 3 d b , a t h v d d = 3 . 3 v , r l = 1 6 w p o = 125 mw ? t h d + n = 7 7 d b , a t h v d d = 3 . 3 v , r l = 3 2 w, p o = 88 mw ? t h d + n = 8 5 d b , a t h v d d = 3 . 3 v , r l = 1 0 k w, v o = 1 . 7 vrms o u t p u t p o w e r a t 1 % t h d + n ? 1 . 9 w , a t v d d = 5 v , a m p m o d e , r l = 4 w ? 1 . 2 w , a t v d d = 5 v , a m p m o d e , r l = 8 w a t 1 0 % t h d + n ? 2 . 4 w a t v d d = 5 v , a m p m o d e , r l = 4 w ? 1 . 5 w a t v d d = 5 v , a m p m o d e , r l = 8 w d e p o p c i r c u i t r y i n t e g r a t e d i n t e r n a l 1 9 - s t e p s g a i n s e t t i n g f o r f l e x i b l e a p p l i c a - t i o n t h e r m a l s h u t d o w n p r o t e c t i o n a n d o v e r c u r r e n t p r o t e c t i o n c i r c u i t r y h i g h s u p p l y v o l t a g e r i p p l e r e j e c t i o n s u r f a c e - m o u n t p a c k a g i n g ? t s s o p - 2 8 p ( w i t h e n h a n c e d t h e r m a l p a d ) ? t q f n 5 x 5 - 2 8 ( w i t h e n h a n c e d t h e r m a l p a d ) l e a d f r e e a v a i l a b l e ( r o h s c o m p l i a n t )
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 a p a 2 0 5 7 a o r d e r i n g a n d m a r k i n g i n f o r m a t i o n n o t e : a n p e c l e a d - f r e e p r o d u c t s c o n t a i n m o l d i n g c o m p o u n d s / d i e a t t a c h m a t e r i a l s a n d 1 0 0 % m a t t e t i n p l a t e t e r m i n a t i o n f i n i s h ; w h i c h a r e f u l l y c o m p l i a n t w i t h r o h s a n d c o m p a t i b l e w i t h b o t h s n p b a n d l e a d - f r e e s o l d e r i n g o p e r a t i o n s . a n p e c l e a d - f r e e p r o d u c t s m e e t o r e x c e e d t h e l e a d - f r e e r e q u i r e m e n t s o f i p c / j e d e c j s t d - 0 2 0 c f o r m s l c l a s s i f i c a t i o n a t l e a d - f r e e p e a k r e f l o w t e m p e r a t u r e . p i n c o n f i g u r a t i o n s a b s o l u t e m a x i m u m r a t i n g s (note 1) symbol parameter rating unit v dd supply voltage (pvdd, cvdd, vdd) v hv dd, supply voltage (hvdd) - 0.3 to 6 v ss supply voltage (vss) +0.3 to - 6 v v set , v amp_en , v hp_en input voltage 0 to v dd +0.3v t a operating ambient temperature range - 40 to 85 c t j maximum junction temperature 150 c ( o v e r o p e r a t i n g f r e e - a i r t e m p e r a t u r e r a n g e u n l e s s o t h e r w i s e n o t e d . ) apa2057a handling code temperature range package code package code r : tssop-28p qb : tqfn5x5-28 operating ambient temperature range i : -40 to 85 c handling code tr : tape & reel lead free code l : lead free device apa2057a r : apa2057a xxxxx xxxxx - date code xxxxx - date code lead free code apa2057a qb : apa2057a xxxxx = thermalpad (connected the thermalpad to gnd plane for better heat dissipation) inr_a 3 inr_h 4 lout- 9 lout+ 8 inl_a 5 pv dd 10 cv dd 11 cgnd 13 apa2057a 15 cv ss 16 hv ss v dd 1 gnd 2 17 hp_r 18 hp_l 21 rout- 19 hv dd 20 pv dd 22 rout+ 23 pgnd 24 hp_en 25 bias inl_h 6 pgnd 7 cp- 14 cp+ 12 28 beep 27 amp_en 26 set (top view) (tssop-28p) (top view) (tqfn5x5-28) apa2057a 20 hp_en 17 rout- 15 hv dd 16 pv dd 18 rout+ 19 pgnd 21 bias 2 4 b e e p 2 5 v d d 2 6 g n d 2 7 i n r _ a 2 8 i n r _ h 2 2 s e t 2 3 a m p _ e n lout- 5 lout+ 4 pgnd 3 inl_a 1 pv dd 6 cv dd 7 inl_h 2 c p - 1 0 c g n d 9 c p + 8 c v s s 1 1 h v s s 1 2 h p _ r 1 3 h p _ l 1 4
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 3 a p a 2 0 5 7 a a b s o l u t e m a x i m u m r a t i n g s ( c o n t . ) (note 1) symbol parameter rating unit t stg storage temperature range - 65 to +150 c t s dr maximum lead soldering temperature 260 , 10 seconds c p d power dissipation internally limited w ( o v e r o p e r a t i n g f r e e - a i r t e m p e r a t u r e r a n g e u n l e s s o t h e r w i s e n o t e d . ) n o t e 1 : absolute maximum ratings are those values beyond which the life of a device may be impaired. exposure to absolute maximum rating conditions for extended periods may affect device reliability. r e c o m m e n d e d o p e r a t i n g c o n d i t i o n s t h e r m a l c h a r a c t e r i s t i c s (note 2) symbol parameter value unit q ja thermal resistance - junction to ambient ( note 2) t s sop - 28 p tqfn 5x5 - 28 45 43 o c/w note 2 : 3.42 in 2 printed circuit board with 2oz trace and copper through 10 vias of 15mil diameter vias. the thermal pad on the tssop-28p & tqfn-28 packages with solder on the printed circuit board. min. max. unit supply v oltage, v dd 4.5 5.5 v supply voltage, hv dd 3.0 3.6 v high level threshold voltage, v ih amp_en, hp_en 2 v low level threshold voltage, v il amp_en, hp_en 0.8 v for amplifier v dd - 1 v common mode input voltage , vicm for he adphone amplifier h v dd - 1 v shutdown 0.8 gain setting 2 4.2 v input voltage (v set ) fix gain 4.5 v e l e c t r i c a l c h a r a c t e r i s t i c s apa2057 a symbol parameter test condition min. typ. max. unit v dd supply voltage 4.5 5.5 v hv dd headphone amplifier supply voltage 3.0 3.6 v i vdd v dd supply current 17.5 29 i hvdd h vdd suppl y current only speaker mode, amp_en = hp_en = 0v 0.15 1 i vdd v dd supply current 12 20 i hvdd h vdd supply current only headphone mode, hp_en = amp_en = 5v 3 5 i vdd v dd supply current 20 35 i hvdd h vdd supply current all enable, hp_en=5v and amp_en = 0v 3 5 ma v dd = 5v, hv dd = 3.3v, gnd = pgnd = cpgnd = 0v, t a = 25 c (unless otherwise noted).
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 4 a p a 2 0 5 7 a e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apa2057 a symbol parameter test condition min. typ. max. unit i sd (hvdd) hv dd shutdown current 50 90 i sd (vdd) v dd shutdown current set = 0v 1 10 m a i amp_en input current amp _ en 1 m a i hp_en input current hp _ en, 10 15 m a speaker mode thd +n =1%, f in =1khz r l =4 w r l =8 w 1.0 1.9 1.2 p o output power thd +n =10%, f in =1khz r l =4 w r l =8 w 1.3 2.4 1.5 w v os output offset voltage r l =8 w , gain =10.5db 10 mv thd+n total harmonic distortion plus noise f in = 1khz p o = 1.5 w, r l =4 w p o = 0.9w, r l =8 w 0.15 0.06 % f in =1 k hz, c b =2.2 m f, r l =8 w , p o =0.92w 80 x ? talk channel separation f in =1 k hz, c b =2.2 m f, r l =4 w , p o =1.5w 83 db psrr power supply rejection ratio c b = 2 .2 m f, r l =8 w , f in =120hz 70 db s/n p o =0.8w, r l =8 w , a - weighted filter 90 db vn noise output voltage gain =10.5db, r l =8 w , c b =2.2 m f 80 m v (rms) headphone mode thd +n = 1%, f in =1khz r l = 16 w r l = 32 w 100 160 120 po output power thd +n = 10%, f in =1khz r l =16 w r l = 3 2 w 150 200 165 mw thd+n=10% 2.9 vo output voltage s wing r l =10k w thd+n=1% 2.4 vrms vos output offset voltage r l =32 w - 10 +10 mv thd+n total harmonic distortion plus noise f in = 1khz p o = 125mw, r l =16 w p o = 88mw, r l =32 w v o =1.7vrms, r l =10k w 0.02 0.0 2 0.005 % f in =1 k hz, r l =16 w , p o = 125 mw 80 f in =1 k hz, r l = 32 w , p o = 88mw 85 x ? talk channel separation f in =1 k hz, r l =10k w , v o = 1.7 vrms 10 5 db psrr power supply rejection ratio c b = 2.2 m f , r l =32 w, f in =120hz 80 d b v dd = 5v, hv dd = 3.3v, gnd = pgnd = cpgnd = 0v, t a = 25 c (unless otherwise noted).
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 5 a p a 2 0 5 7 a e l e c t r i c a l c h a r a c t e r i s t i c s ( c o n t . ) apa2057 a symbol parameter test condition min. typ. max. unit headphone mode (cont.) s/n w ith a - weighted filter p o = 70mw, r l =32 w v o = 1. 2vrms, r l =10k w 95 92 db vn noise output voltage c b = 2.2 m f 30 m v (rms) r f input f eedback resist ance 38 40 42 k w charge pump fosc switching frequency 460 540 620 khz cv ss charge dump output voltage (cvss) n o load - 0.98 v dd v req charge pump requirement resistance 9 12 w beep vbeep beep trigger level 3 v pp t res beep response time 4 m s attenuation r l = 32 w , v o = 1.1vrms, f in = 1khz 115 db att(hp_en) hp disable attenuation r l = 10k w , v o = 1.1vrms, f in = 1khz 85 db r l = 8 w , v o = 2vrms, f in = 1khz 112 db att( amp_en ) amp disable attenuation r l = 4 w , v o = 2vrms, f in = 1khz 112 db att_sd(hp_en) shutdown active r l = 10k w on the headphone mode , v o = 1.1vrms, f in = 1khz 90 db att _ sd( amp_en ) shutdown active r l = 8 w on the amp mode , v o = 1vrms, f in = 1khz 100 db headphone to speaker crosstalk amp_en = 0 v , r l = 8 w x?talk channel separation hp_en = 5v , r l = 16 w , f in = 1khz, p o = 125mw 85 db speaker to headphone crosstalk hp_en = 5v , r l = 10k w x?talk channel separation amp_en = 0 v , r l = 4 w , f in = 1khz, p o = 1.5w 80 db amplifier start up time t start - up start up time 120 msec v dd = 5v, hv dd = 3.3v, gnd = pgnd = cpgnd = 0v, t a = 25 c (unless otherwise noted).
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 6 a p a 2 0 5 7 a g a i n s e t t i n g t a b l e _ a m p m o d e input voltage (v set ) gain (db) low (v) high (v) hysteresis (mv) recommended voltage (v) - 70 0 2.00 sd 0.00 - 7 2.04 2.12 47 2.08 - 5 2.15 2.24 36 2.20 - 3 2.28 2.35 41 2.31 - 1 2.39 2.47 41 2.43 1 2.51 2.58 35 2.54 3 2.62 2.70 41 2.66 4 2.74 2.81 4 8 2.78 5 2.86 2.92 43 2.89 6 2.97 3.04 47 3.01 7 3.09 3.15 45 3.12 8 3.21 3.27 54 3.24 9 3.33 3.39 59 3.36 10 3.45 3.51 64 3.48 11 3.56 3.62 53 3.59 12 3.68 3.73 59 3.70 13 3.80 3.85 66 3.82 14 3.92 3.96 69 3.94 15 4.02 4.07 64 4.05 16 4.15 4.1 7 76 4.16 10.5 4.26 5.00 94 5.00 gain (db) r1 (1%) r# (1%) - 70 10k 0 - 7 18 k 13k - 5 20k 16k - 3 18k 16k - 1 16k 15k 1 15k 16k 3 13k 15k 4 24k 30k 5 13k 18k 6 13k 20k 7 13k 22k 8 16k 30k 9 13k 27 k 10 1 3 k 30 k 11 15k 39 k 12 13k 39 k 13 13k 43 k 14 13k 50 k 15 1 5k 68 k 16 1 3k 68 k 10.5 10k >90k ( v d d = 5 v ) r e c o m m e n d r e s i s t a n c e ? s v a l u e f o r g a i n s e t t i n g
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 7 a p a 2 0 5 7 a thd+n (%) o u t p u t p o w e r ( w ) o u t p u t p o w e r ( w ) thd+n (%) crosstalk (db) thd+n (%) t h d + n v s . o u t p u t p o w e r f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t p o w e r t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y output noise voltage (vrms) f r e q u e n c y ( h z ) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y r e s p o n s e phase (deg) f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s 0.05 10 0.1 1 0 3 0.5 1 1.5 2 2.5 v dd =5v f in =1khz c in =2.2 m f bw<80khz amp mode r l =4 w r l =8 w 0.1 10 1 0.01 5 0.1 1 2 v dd =5v r l =4 w c in =2.2 m f bw<80khz amp mode f in =20khz f in =20hz f in =1khz 0.1 10 1 20 20k 100 1k 10k v dd =5v r l =4 w c in =2.2 m f p o =1.5w bw<80khz amp mode right channel left channel -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k right to left left to right v dd =5v r l =4 c in =2.2 m u f p o =1.5w amp mode w 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v r l =4 w c in =2.2 m f a-weighted amp mode -5 +30 +0 +5 +10 +15 +20 +25 +6 +11 +7 +8 +9 +10 10 200k 100 1k 10k 100k v dd =5v c in =2.2 m f r l =4 w p o =0.2w amp mode gain phase
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 8 a p a 2 0 5 7 a thd+n (%) o u t p u t p o w e r ( w ) f r e q u e n c y ( h z ) thd+n (%) output noise voltage (vrms) crosstalk (db) t h d + n v s . o u t p u t p o w e r f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y ( h z ) f r e q u e n c y r e s p o n s e crosstalk (db) c r o s s t a l k v s . f r e q u e n c y f r e q u e n c y ( h z ) phase (deg) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0.05 10 0.1 1 0.01 5 0.1 1 v dd =5v r l =8 w c in =2.2 m f bw<80khz amp mode f in =20hz f in =20khz f in =1khz 0.05 10 0.1 1 20 20k 100 1k 10k v dd =5v r l =8 w c i n =2.2 m f p o =0.92w bw<80khz amp mode right channel left channel -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =8 c in =2.2 f p o =0.92w amp mode right to left left to right w m 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f a-weighted amp mode -5 +30 +0 +5 +10 +15 +20 +25 +6 +11 +7 +8 +9 +10 10 200k 100 1k 10k 100k v dd =5v c in =2.2 m f r l =8 w p o =0.13w amp mode gain phase -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =4ohm (amp) r l =10k w (hp) c in =2.2 m f (amp) p o =1.5w(amp) amp (active) mode hp mode right(amp) to right(hp) right(amp) to left(hp) left(amp) to left(hp) left(amp) to right(hp)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 9 a p a 2 0 5 7 a amp attenuation (db) f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) amp attenuation (db) shutdown attenuation (db) shutdown attenuation (db) a m p a t t e n u a t i o n v s . f r e q u e n c y f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) a m p a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y output voltage (vrms) i n p u t v o l t a g e ( v r m s ) i n p u t v o l t a g e v s . o u t p u t v o l t a g e output voltage (vrms) i n p u t v o l t a g e v s . o u t p u t v o l t a g e i n p u t v o l t a g e ( v r m s ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =4 w c i n =2.2 m f v o =2vrms(f in =1khz, amp enable ) amp mode (disable) -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f v o =2vrms(f in =1khz,amp enable) amp mode (disable) -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v r l =4 w c in =2.2 m f v o =1vrms(f in =1khz) shutdown active amp mode -120 -110 -100 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f v o =1vrms(f in =1khz) shutdown active amp mode +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 3.5 0.5 1 1.5 2 2.5 3 0 1.5 0.3 0.6 0.9 1.2 v dd =5v r l =4 w c in =2.2 m f f in =1khz amp mode 0 4 0.5 1 1.5 2 2.5 3 3.5 1.5 0.3 0.6 0.9 1.2 v dd =5v r l =8 w c in =2.2 m f f in =1khz amp mode
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 0 a p a 2 0 5 7 a thd+n (%) o u t p u t v o l t a g e ( v o l t ) o u t p u t p o w e r ( w ) thd+n (%) thd+n (%) thd+n (%) t h d + n v s . o u t p u t v o l t a g e o u t p u t p o w e r ( w ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t p o w e r t h d + n v s . o u t p u t p o w e r t h d + n v s . f r e q u e n c y crosstalk (db) f r e q u e n c y ( h z ) c r o s s t a l k v s . f r e q u e n c y output noise voltage (vrms) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0.001 10 0.01 0.1 1 3 0.5 1 1.5 2 2.5 0 t t r l =10k w r l =300 w r l =32 w r l =16 w v dd =5v hv d d =3.3v f in =1khz c in =3.3 m f bw<80khz hp mode 0.01 10 0.1 1 1m 300m 10m 100m v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f bw<80khz hp mode f in =20khz f in =20hz f in =1khz 0.01 10 0.1 1 0 250m 50m 100m 150m 200m v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f f in =1khz bw<80khz hp mode stereo, in phase stereo, 180 o out of phase mono 0.005 10 0.01 0.1 1 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f p o =125mw hp mode bw<80khz bw<22khz -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k right to left left to right v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f p o =125mw hp mode 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f a-wighted hp mode right channel left channel
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 1 a p a 2 0 5 7 a gain(db) f r e q u e n c y ( h z ) o u t p u t p o w e r ( w ) thd+n (%) thd+n (%) thd+n (%) f r e q u e n c y r e s p o n s e o u t p u t p o w e r ( w ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t p o w e r t h d + n v s . o u t p u t p o w e r t h d + n v s . f r e q u e n c y crosstalk (db) f r e q u e n c y ( h z ) c r o s s t a l k v s . f r e q u e n c y output noise voltage (v) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y f r e q u e n c y ( h z ) phase (deg) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) +170 +190 +175 +180 +185 -0.2 +0.2 -0.1 -0 +0.1 10 200k 100 1k 10k 100k gain phase v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3.3 m f p o =28mw hp mode 0.01 10 0.1 1 1m 200m 10m 100m f in =20khz f in =20hz f in =1khz v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f bw<80khz hp mode 0.01 10 0.1 1 0 200m 50m 100m 150m v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f f in =1khz bw<80khz hp mode stereo, in phase stereo, 180 o out of phase mono 0.001 10 0.01 0.1 1 20 20k 100 1k 10k bw<80khz bw<22khz v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f p o =88mw hp mode 1 m 100 m 10 m 20 20k 100 1k 10k right channel left channel v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f a-wighted hp mode -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f p o =88mw hp mode right to left left to right
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 2 a p a 2 0 5 7 a gain (db) f r e q u e n c y ( h z ) o u t p u t v o l t a g e ( v r m s ) thd+n (%) crosstalk (db) thd+n (%) f r e q u e n c y r e s p o n s e f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . o u t p u t v o l t a g e t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y output noise voltage (vrms) f r e q u e n c y ( h z ) o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y r e s p o n s e f r e q u e n c y ( h z ) phase (deg) phase (deg) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) +170 +190 +175 +180 +185 -0.2 +0.2 -0.1 -0 +0.1 10 200k 100 1k 10k 100k v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f p o =13mw hp mode gain phase 0.001 10 0.01 0.1 1 0 3 0.5 1 1.5 2 2.5 f in =20hz f in =20khz f in =1khz v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f bw<80khz hp mode 0.001 10 0.01 0.1 1 20 20k 100 1k 10k right channel left channel v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k left to right right to left v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode +175 +195 +180 +185 +190 -0.4 +0.4 -0.2 +0 +0.2 10 200k 100 1k 10k 100k gain phase v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f v o =240mvrms hp mode 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3.3 m f a-wighted hp mode left channel right channel
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 3 a p a 2 0 5 7 a thd+n (%) o u t p u t v o l t a g e ( v o l t ) f r e q u e n c y ( h z ) thd+n (%) output noise voltage (vrms) crosstalk (db) t h d + n v s . o u t p u t v o l t a g e f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t h d + n v s . f r e q u e n c y c r o s s t a l k v s . f r e q u e n c y o u t p u t n o i s e v o l t a g e v s . f r e q u e n c y gain (db) f r e q u e n c y ( h z ) f r e q u e n c y r e s p o n s e crosstalk (db) c r o s s t a l k v s . f r e q u e n c y f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) phase (deg) 0.001 10 0.01 0.1 1 0 3 0.5 1 1.5 2 2.5 f in =20hz f in =20khz f in =1khz v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f bw<80khz hp mode 0.001 10 0.01 0.1 1 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode right channel left channel -130 +0 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f v o =1.7vrms bw<80khz hp mode left to right right to left 1 m 100 m 10 m 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f a-wighted hp mode right channel left channel +175 +195 +180 +185 +190 -0.4 +0.4 -0.2 +0 +0.2 10 200k 100 1k 10k 100k gain phase v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f v o =240mvrms hp mode -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =16 w (hp) r l =8 w (amp) r in =39k w (hp) c in =3.3 m f (hp) p o =125mw(hp) amp (active) mode hp mode right (hp) to right (amp) left (hp) to right (amp) right (hp) to left (amp) left (hp) to left (amp)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 4 a p a 2 0 5 7 a hp attenuation (db) f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) hp attenuation (db) shutdown attenuation (db) shutdown attenuation (db) h p a t t e n u a t i o n v s . f r e q u e n c y f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) h p a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y s h u t d o w n a t t e n u a t i o n v s . f r e q u e n c y output voltage (vrms) i n p u t v o l t a g e ( v r m s ) i n p u t v o l t a g e v s . o u t p u t v o l t a g e output voltage (vrms) i n p u t v o l t a g e v s . o u t p u t v o l t a g e i n p u t v o l t a g e ( v r m s ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) -120 +0 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =32 w c in =3.3 m f v o =1vrms(f in =1khz hp enable) hp mode (disable) right channel left channel -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w c in =3.3 m f v o =1vrms(f in =1khz hp enable) hp mode (disable) left channel right channel -140 +0 -130 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =32 w c in =3.3 m f v o =1vrms(f in =1khz) shutdown active hp mode left channel right channel -130 +0 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w c in =3.3 m f v o =1vrms(f in =1khz) shutdown active hp mode left channel right channel 0 2.5 0.5 1 1.5 2 0 2.5 0.5 1 1.5 2 stereo, in phase mono v dd =5v hv dd =3.3v r l =16 w r in =39k w c in =3 m f f in =1khz hp mode 0 3 0.5 1 1.5 2 2.5 0 3 0.5 1 1.5 2 2.5 v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3 m f f in =1khz hp mode stereo, in phase mono
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 5 a p a 2 0 5 7 a output voltage (vrms) i n p u t v o l t a g e ( v r m s ) i n p u t v o l t a g e ( v r m s ) output voltage (vrms) i n p u t v o l t a g e v s . o u t p u t v o l t a g e i n p u t v o l t a g e v s . o u t p u t v o l t a g e p s r r v s . f r e q u e n c y p s r r v s . f r e q u e n c y psrr (db) f r e q u e n c y ( h z ) p s r r v s . f r e q u e n c y psrr (db) p s r r v s . f r e q u e n c y f r e q u e n c y ( h z ) psrr (db) psrr (db) f r e q u e n c y ( h z ) f r e q u e n c y ( h z ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 0 3 0.5 1 1.5 2 2.5 0 3 0.5 1 1.5 2 2.5 mono & stereo, in phase v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3 m f f in =1khz hp mode -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k right channel left channel v dd =5v r l =4 w c in =2.2 m f vrr=200mvrms amp mode vrr: ripple voltage on v dd 20 20k 100 1k 10k v dd =5v r l =8 w c in =2.2 m f vrr=200mvrms amp mode right channel left channel -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 vrr: ripple voltage on v dd -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k left channel right channel v dd =5v hv dd =3.3v r l =32 w r in =39k w c in =3.3 m f vrr=200mvrms hp mode vrr: ripple voltage on hv dd -100 +0 -90 -80 -70 -60 -50 -40 -30 -20 -10 20 20k 100 1k 10k v dd =5v hv dd =3.3v r l =10k w r in =39k w c in =3.3 m f vrr=200mvrms hp mode left channel right channel vrr: ripple voltage on hv dd 0 3 0.5 1 1.5 2 2.5 0 3 0.5 1 1.5 2 2.5 stereo, in phase mono v dd =5v hv dd =3.3v r l =300 w r in =39k w c in =3 m f f in =1khz hp mode
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 6 a p a 2 0 5 7 a supply current (ma) s u p p l y v o l t a g e ( v o l t ) s u p p l y v o l t a g e ( v o l t ) shutdown current ( m a) s u p p l y c u r r e n t v s . s u p p l y v o l t a g e s h u t d o w n c u r r e n t v s . s u p p l y v o l t a g e p o w e r d i s s i p a t i o n v s . o u t p u t p o w e r p o w e r d i s s i p a t i o n v s . o u t p u t p o w e r o u t p u t p o w e r v s l o a d r e s i s t a n c e o u t p u t p o w e r v s l o a d r e s i s t a n c e & c h a r g e p u m p c a p a c i t a n c e power dissipation (w) power dissipation (mw) o u t p u t p o w e r ( w ) o u t p u t p o w e r ( m w ) output power (mw) output power (mw) l o a d r e s i s t a n c e ( w ) l o a d r e s i s t a n c e ( w ) t y p i c a l o p e r a t i n g c h a r a c t e r i s t i c s ( c o n t . ) 2 4 6 8 10 12 14 16 18 20 3.0 3.5 4.0 4.5 5.0 5.5 no load hp mode amp mode * hp mode disable h v d d = 3 . 3 v i hvdd =0.15ma * * amp mode disable v d d = 5 v i vdd =1 2 ma 0 10 20 30 40 50 3.0 3.5 4.0 4.5 5.0 5.5 amp mode hp mode no load i sd(vdd) i sd(hvdd) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0 v dd =5v thd+n <1% amp mode r l =8 w r l =4 w 0 0 50 100 150 200 r l =16 w r l =32 w v dd =5v hv dd =3.3v thd+n <1% hp mode 50 100 150 200 250 300 350 400 10 100 1000 mono, thd+n=10% mono, thd+n=1% v dd =5v hv dd =3.3v f in =1khz bw<80khz hp mode 0 50 100 150 200 250 300 10 20 30 40 50 60 70 80 90 100 v dd =5v f in =1khz bw<80khz hp mode c f =c co =2.2 m f thd+d=1%; mono & stereo, in phase c f =c co =1 m f thd+n=1%; mono c f =c co =1 m f thd+n=1%; stereo, in phase c f :charge pump flying capacitor c co :charge pump output capacitor 0 50 100 150 200 250 300 350
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 7 a p a 2 0 5 7 a o u t p u t t r a n s i e n t a t t u r n o f f o u t p u t t r a n s i e n t a t s h u t d o w n r e l e a s e o u t p u t t r a n s i e n t a t t u r n o n o u t p u t t r a n s i e n t a t s h u t d o w n a c t i v e o p e r a t i n g w a v e f o r m s amp_out ((out+)-(out-)) v dd hp_out 5v/div 10mv/div 20mv/div sd hp_out amp_out ((out+)-(out-)) 5v/div 10mv/div 20mv/div v dd hp_out amp_out ((out+)-(out-)) 5v/div 10mv/div 20mv/div amp_out ((out+)-(out-)) hp_out 5v/div 10mv/div 20mv/div sd 2 0 m s / d i v 2 0 0 m s / d i v 2 0 m s / d i v 2 0 m s / d i v
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 8 a p a 2 0 5 7 a tssop - 28 tqfn - 28 no. no. name function description 1 25 vdd power supply for control section 2 26 gnd ground 3 27 inr_a right channel input terminal for speaker amplifier 4 28 inr_ h right channel input terminal for headphone driver 5 1 inl_ a left channel input terminal for speaker amplifier 6 2 inl_ h left channel input terminal for headphone driver 7,23 3,19 pgnd power ground 8 4 lout+ left channel positive output for speaker 9 5 lout - left channel negative output for speaker 10,20 6,16 pvdd power amplifier power supply 11 7 cvdd charge pump power supply 12 8 cp+ charge pump flying capacitor positive connection 13 9 cgnd charge pump ground 14 10 cp - charge pump flying capacitor negative connection 15 11 cvss charge pu mp output, connect to the ?hvss? 16 1 2 hvss headphone amplifier negative power supply 17 13 hp_r right channel output for headphone 18 14 hp_l left channel output for headphone 19 15 hv dd headphone amplifier positive power supply 21 17 rout - right channel negative output for speaker 22 18 rout+ right channel positive output for speaker 24 20 hp_en headphone driver enable pin, pull high to enable headphone mode 25 21 b ias bias voltage generator 26 22 set it has 19 steps gain setting control from 2.0~4.2v; pull high to 5v is 10.5db fix gain and pull low to 0v, the apa2057 a enter shutdown mode. i sd = 80 m a 27 23 amp_en speaker driver enable pin, pull low to enable speaker mode 28 24 beep pc beep trigger signal input p i n d e s c r i p t i o n s
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 1 9 a p a 2 0 5 7 a b l o c k d i a g r a m charge pump spk en hp en inr_a inl_a inr_h inl_h set bias cp+ cp- cv ss hp_r hp_l amp_en hp_en set hv ss *40k w *40k w hv dd power mamagement pv dd v dd cv dd internal gain setting cgnd pgnd gnd rout- rout+ lout- lout+ * the internal rf's value has 10% variation by process r f (hp_r) r f (hp_l)
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 0 a p a 2 0 5 7 a t y p i c a l a p p l i c a t i o n c i r c u i t r # : f o r t h e g a i n s e t t i n g o f s p e a k e r d r i v e r t h a t y o u n e e d , r e f e r t o t h e g a i n s e t t i n g t a b l e ? s r e c o m m e n d e d v o l t a g e , a n d s e t t i n g t h i s v o l t a g e a t s e t p i n ? s v o l t a g e = 5 r # / ( r # + 1 0 k ) . ring headphone jack sleeve tip r_ch r_ch for amp l_ch for amp r_ch for hp 39k w 2.2 m f 2.2 m f 4 w charge pump spk en hp en inr_a inl_a inr_h inl_h set bias cp+ cp- cv ss hp_r hp_l amp_en hp_en set hv ss *40k w *40k w hv dd power management pv dd v dd cv dd internal gain setting cgnd pgnd gnd rout- rout+ 2.2 m f 3.3 m f l_ch for hp 39k w 3.3 m f 1 m f 1 m f l_ch 4 w lout- lout+ 1 m f 0.1 m f 0.1 m f 10 m f 0.1 m f c i (amp_r) c i (amp_l) c i (hp_r) c i (hp_l) r i (hp_r) r i (hp_l) r f (hp_r) r f (hp_l) c cpb c cpf c cpo 10 n f v dd (5v) 10k w r # shutdown v dd (5v) v dd (5v) hv dd (3.3v) v ss 51k w 4.7 n f recommended for de-pop c b set pull-high hp_en to enable headohone driver r 1 c s(vdd) c s(pvdd) c s(hvdd) cv dd
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 1 a p a 2 0 5 7 a a m p l i f i e r m o d e o p e r a t i o n t h e a p a 2 0 5 7 a h a s t w o p a i r s o f o p e r a t i o n a l a m p l i f i e r s i n t e r n a l l y , w h i c h a l l o w s d i f f e r e n t a m p l i f i e r c o n f i g u r a t i o n s . f i g u r e 1 : a p a 2 0 5 7 a i n t e r n a l c o n f i g u r a t i o n ( e a c h c h a n n e l ) t h e o p 1 a n d o p 2 a r e a l l d i f f e r e n t i a l d r i v e c o n f i g u r a t i o n s . t h e d i f f e r e n t i a l d r i v e c o n f i g u r a t i o n s d o u b l i n g t h e v o l t a g e s w i n g o n t h e l o a d . c o m p a r e w i t h t h e s i n g l e - e n d i n g c o n f i g u r a t i o n , t h e d i f f e r e n t i a l g a i n f o r e a c h c h a n n e l i s 2 x ( g a i n o f s e m o d e ) . b y d r i v i n g t h e l o a d d i f f e r e n t i a l l y t h r o u g h o u t p u t s o u t + a n d o u t - , a n a m p l i f i e r c o n f i g u r a t i o n c o m m o n l y r e f e r r e d t o a l l d i f f e r e n t i a l m o d e i s e s t a b l i s h e d . a l l d i f f e r e n t i a l m o d e o p e r a t i o n i s d i f f e r e n t f r o m t h e c l a s s i c a l s i n g l e - e n d e d s e a m p l i f i e r c o n f i g u r a t i o n w h e r e o n e s i d e o f i t s l o a d i s c o n - n e c t e d t o g r o u n d . a d i f f e r e n t i a l a m p l i f i e r d e s i g n h a s a f e w d i s t i n c t a d v a n - t a g e s o v e r t h e s e c o n f i g u r a t i o n , a s i t p r o v i d e s d i f f e r e n t i a l d r i v e t o t h e l o a d , t h u s i t i s d o u b l i n g t h e o u t p u t s w i n g f o r a s p e c i f i e d s u p p l y v o l t a g e . t h e o u t p u t p o w e r c a n b e 4 t i m e s g r e a t e r t h a n t h e s e a m p l i f i e r w o r k i n g u n d e r t h e s a m e c o n d i t i o n . a d i f f e r e n t i a l c o n f i g u r a t i o n , s i m i l a r a s t h e o n e u s e d i n a p a 2 0 5 7 a , a l s o c r e a t e s a s e c o n d a d v a n t a g e o v e r s e a m p l i f i e r s . s i n c e t h e d i f f e r e n t i a l o u t p u t s , r o u t + , r o u t - , l o u t + , a n d l o u t - , a r e b i a s e d a t h a l f - s u p p l y , t h e r e i s n o n e e d f o r d c v o l t a g e a c r o s s t h e l o a d . t h i s e l i m i n a t e s t h e n e e d f o r a n o u t p u t c o u p l i n g c a p a c i t o r w h i c h i s r e q u i r e d i n a s i n g l e s u p p l y , s e c o n f i g u r a t i o n . the apa2057a?s headphone amplifiers uses a charge pump to invert the positive power supply (cv dd ) to negative power supply (cv ss ), see figure2. the headphone am- plifiers operate at this bipolar power supply (hv dd & v ss ), and the outputs reference refers to the ground. this fea- ture eliminates the output capacitor that is using in con- ventional single-ended headphone amplifier. t h e h e a d - p h o n e a m p l i f i e r i n t e r n a l s u p p l y v o l t a g e c o m e s f r o m h v d d a n d v s s . f o r g o o d a c p e r f o r m a n c e , t h e h v d d c o n n e c t e d t o 3 . 3 v i s r e c o m m e n d e d . i t c a n a v o i d t h e o u t p u t o v e r v o l t - a g e f o r l i n e o u t a p p l i c a t i o n . charge pump flying capacitor the flying capacitor (c cpf ) affects the load transient of the charge pump. if the capacitor?s value is too small, then that will degrade the charge pump?s current driver capa- bility and the performance of headphone amplifier. increasing the flying capacitor?s value will improve the load transient of charge pump. it is recommend to use the low esr ceramic capacitors (x7r type is recommended) above 1 m f. figure 2: cap-free operation pre-amplifier output signal v bias op1 op2 - + - + out+ out- diff_amp_config headphone mode operation a p p l i c a t i o n i n f o r m a t i o n h v dd h v dd /2 gnd v out h v dd v ss gnd v out conventional headphone amplifier cap-free headphone amplifier
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 2 a p a 2 0 5 7 a the hp_en will detect the voltage. if the voltage is less than 0.8v, the headphone amplifiers will be disabled; if greater than 2v, then the headphone amplifier will be enabled. in figure 3, phone-jack with the control pin is used and connected to hp_en input from control pin. when a headphone plug is inserted, the hp_en will pull high internally which enables headphone amplifiers; with- out headphone plug, the hp_en is pulled to gnd. operation mode the apa2057a amplifier has two pairs of independent amplifier. one for stereo speaker is btl structure, and the other for headphone is cap-less structure. each pair has independent input pin; inr_a and ina_l are for ste- reo speaker drivers, and inr_h and inl_h are for stereo headphone drivers. amplifier mode operation: pull low the amp_en control pin can enable the stereo speaker driver. headphone mode operation: pull high the hp_en control pin can enable the cap-less headphone drive. both amplifier and headphone ?on? mode: pull low the amp_en and pull high the hp_en control pins, then turn on both speaker drivers and headphone drivers both amplifier and headphone ?off? mode: pull high the amp_en and pull low the hp_en control pins, then turn off both speaker drivers and head- phone drivers if the amp_en and hp_en are connected together, then this pin will be connected to headphone jack?s control pin (figure 3), the apa2057a is switchable between ?am- plifier mode (headphone mute), or headphone mode (amplifier mute). g a i n s e t t i n g t h e g a i n f o r s p e a k e r d r i v e r s c a n b e a d j u s t a b l e b y a p p l y - i n g d c v o l t a g e t o s e t p i n . t h e a p a 2 0 5 7 a c o n t r o l c o n - s i s t s 1 9 s t e p g a i n s e t t i n g s f r o m 2 . 0 v ~ 4 . 2 v , a n d t h e g a i n i s f r o m - 7 d b t o 1 6 d b . e a c h g a i n s t e p c o r r e s p o n d s t o a s p e c i f i c i n p u t v o l t a g e r a n g e , a s s h o w n i n ? g a i n s e t t i n g t a b l e ? . t o m i n i m i z e t h e e f f e c t o f n o i s e o n t h e g a i n s e t t i n g c o n t r o l , w h i c h c a n a f f e c t t h e s e l e c t e d g a i n l e v e l , h y s t e r - e s i s a n d c l o c k d e l a y a r e i m p l e m e n t e d . f o r t h e h i g h e s t a c c u r a c y , t h e v o l t a g e s h o w n i n t h e ? r e c o m m e n d e d v o l t - a g e ? c o l u m n o f t h e t a b l e i s u s e d t o s e l e c t a d e s i r e d g a i n . t h i s r e c o m m e n d e d v o l t a g e i s e x a c t l y h a l f w a y b e t w e e n t h e t w o n e a r e s t t r a n s i t i o n s . t h e a m o u n t o f h y s t e r e s i s c o r r e s p o n d s t o h a l f o f t h e s t e p w i d t h , a s s h o w n i n f i g - u r e 4 . a p p l y 0 v t o s e t p i n w i l l p l a c e t h e a p a 2 0 5 7 a i n t o s h u t d o w n m o d e , a n d w h e n s d = 5 v , i t a l l o w s t h e s p e a k e r d r i v e r a t a f i x e d g a i n ( a v = 1 0 . 5 d b ) . figure 3 hpd configurations charge pump output capacitor the output capacitor (c cpo )?s value affects the power ripple directly at cv ss (v ss ). increasing the value of output capacitor reduces the power ripple. the esr of output capacitor affects the load transient of cv ss (v ss ). lower esr and greater than 1 m f ceramic capacitor (x7r type is recommended) is recommendation. charge pump bypass capacitor the bypass capacitor (c cpb ) relates with the charge pump switching transient. the capacitor?s value is same as flying capacitor (1 m f). place it close to the cv dd and pgnd. headphone detection input a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) figure 4: apa2057a gain setting vs. set pin voltage dc volume (v) g a i n ( d b ) 0.0 1.0 2.0 3. 0 4.0 5.0 -70 -60 -50 -40 -30 -20 -10 0 10 20 forward backward ring headphone jack with swich sleeve control pin tip hp_en hpd_switch hp_l hp_r 1k w 1k w headphone detection
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 3 a p a 2 0 5 7 a hp mode gain setting table for reference r i(hp) ,external (k w ) *r f(hp) ,internal (k w ) hp out (v/v) hp gain(db) 62 40 0.65 - 3.8 50 40 0.80 - 1.9 39 40 1.03 0.2 30 40 1.33 2.5 24 40 1.67 4.4 20 40 2.00 6.0 *the internal rf's value has 10% variation by p rocess. consider to input resistance variation, the c i is 1.6 m f, so one would likely choose a value in the range of 2.2 m f to 3.3 m f. a further consideration for this capacitor is the leakage path from the input source through the input network (r i +r f , c i ) to the load. this leakage current creates a dc offset voltage at the input to the amplifier that reduces useful headroom, especially in high gain applications. for this reason, a low-leakage tantalum or ceramic capacitor is the best choice. when polarized capacitors are used, the positive side of the capacitor should face the amplifier input. as the dc level is held at v dd /2, which is likely higher than the source dc level. (2) please note that it is important to confirm the capaci- tor polarity in the application. note: the headphone dirver?s input is ground reference, so please check the c i(hp) ?s polarized at design. effective bias capacitor, c b as with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. the capacitor location on both the bypass and power supply pins should be as close to the device as possible. the effect of a larger bypass capacitor is improved psrr due to increased 1.8v bias voltage stability. typical applications employ a 5v regulator with 2.2 m f and a 0.1 m f bypass capacitor, which aids in supply filtering. this doe s not eliminate the need for bypassing the supply nodes of the apa2057a. the selection of by- pass capacitors, especially c b , is thus dependent upo n desired psrr requirements and click-and-pop performance. power supply decoupling, c s the apa2057a is a high-performance cmos audio amplifier that requires adequate power supply decoupling to ensure the output total harmonic distortion (thd+n) is as low as possible. power supply decoupling also prevents the oscillations causing by long lead length between the amplifier and the speaker. the optimum decoupling is achieved by using two different types of capacitor that target on different types of noise on the power supply leads. for higher frequency transients, spikes, or digital hash on the line, a good low equivalent- series -resistance (esr) ceramic capacitor, typically 0.1 m f, is placed as close as possible to the device v dd lead works best (the pin1 (v dd ) and pin2 (gnd)?s capaci- tor must short less than 1cm). for filtering lower-frequency noise signals, a large aluminum electrolytic capacitor of 10 m f or greater is placed near the audio power amplifier is recommended. shutdown function in order to reduce power consumption while not in use, the apa2057a contains a shutdown pin to externally turn off the amplifier bias circuitry. this shutdown feature turns the amplifier off when a logic low is placed on the a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) input capacitor, c i in the typical application, an input capacitor, c i , is required to allow the amplifier to bias the input signal to the proper dc level for optimum operation. in this case, c i and the minimum input impedance ri from a high-pass filter with the corner frequency are determined by the following equation: the value of ci is important to consider as it directly affects the low frequency performance of the circuit. consider the example where r i is 10k w and the specification calls for a flat bass response down to 10hz. equation is reconfigured as below: f o r h e a d p h o n e d r i v e r , t h e i n t e r n a l f e e d b a c k r e s i s t o r i s 4 0 k w ( r f ( h p ) e x t e r n a l , 1 0 % v a r i a t i o n b y p r o c e s s ) , s o t h e h e a d p h o n e d r i v e r ? s g a i n i s s e t b y t h e i n p u t r e s i s t o r ( r i ( h p ) e x t e r n a l ) , t h e t a b l e 1 l i s t s t h e r e f e r e n c e g a i n s e t t i n g s w i t h e x t e r n a l r e s i s t o r f o r h e a d p h o n e d r i v e r ( h p m o d e ) . t a b l e 1 : g a i n s e t t i n g t a b l e f o r r e f e r e n c e g a i n s e t t i n g ( c o n t . ) ) c r (2 1 = (highpass) f i i(min) c p (1) fc) r (2 1 = c i i p
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 4 a p a 2 0 5 7 a (5) (7) (6) shutdown function (cont.) (4) table 1 calculates efficiencies for four different output psup p o efficiency = (3) 4v r r 2v * v / 2r ) v * (v psup p dd l l p dd l p p o p = t y ? p t y ? = l p p l o o o 2r ) v * (v r rms v * rms v p = = where: 2 v rms v p o = r 2v * v = (avg) i * v = psup l p dd dd dd p efficiency of a differential configuration: since the apa2057a is a dual channel power amplifier, the maximum internal power dissipation is 2 times that both of equations depending on the mode of operation. even with this substantial increasing in power dissipation, the apa2057a does not require extra heatsink. the a final point to remember about linear amplifiers is how to manipulate the terms in the efficiency equation to utmost advantage when possible. note that in equation, v dd is in the denominator. this indicates that as v dd goes down, efficiency goes up. in other words, using the effi- ciency analysis to choose the correct supply voltage and speaker impedance for the application. power dissipation whether the power amplifier is operated in btl or se modes, power dissipation is a major concern. equation 8 states the maximum power dissipation point for a se mode operating at a given supply voltage and driving a specified load. se mode: in btl mode operation, the output voltage swing is doubled as in se mode. thus the maximum power dissipation point for a btl mode operating at the same given conditions is 4 times as in se mode. btl mode: r 2 v = p l 2 dd max d, p (8) r p 2 4v = p l 2 2 dd max d, (9) a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) set pin. the trigger point between a logic high and logic low level is typically 2.0v. it is the best to switch be- tween ground and the supply v dd to provide maximum device performance. by switching the set pin to low, the amplifier enters a low-current consumption state, i dd <80 m a. even the apa2057a is in shutdown mode, pc_beep will keep detecting circuit. in normal operating, set pin is pulled to high level to keep the ic out of the shutdown mode. the set pin should be tied to a definite voltage to avoid unwanted state changes.the wake-up time of shut- down is about 150ms, and the shutdown release?s pop is caused by the operational amplifier?s offset. pc-beep detection the apa2057a integrates a pcbeep circuit detec- tion for notebook pc using. when pc-beep signal drives to pcbeep input pin, pcbeep mode is active. the apa2057a will turn on speaker drivers and the inter- nal gain is fixed as 0db. the pcbeep signal becomes the amplifiers input signal. if the amplifiers in the shut- down mode, it will be out of shutdown mode whenever pcbeep mode is en abled. the apa2057a will return to previous set ting when it is out of pc beep mode. the input impedance is 100k w on pcbeep input pin. speaker driver amplifier efficiency an easy-to-use equation to calculate efficiency starts out as being equal to the ratio of power from the power supply to the power delivered to the load. the following equations are the basis for calculating amplifier efficiency. t a b l e 2 . e f f i c i e n c y v s . o u t p u t p o w e r i n 5 - v / 8 w d i f f e r e n t i a l a m p l i f i e r s y s t e m s . power levels. note that the efficiency of the amplifier is quite low for lower power levels and rises sharply as power to the load is increased resulting in nearly flat internal power dissipation over the normal operating range. note that the internal dissipation at full output power is less than in the half power range. calculating the efficiency for a specific system is the key to proper power supply design. for a stereo 1w audio system with 8w loads and a 5v supply, the maximum draw on the power supply is almost 3w. v po (w) efficiency (%) idd(a) vpp (v) pd (w) 0.25 31. 25 0.16 2.00 0.55 0.50 47.62 0.21 2.83 0.55 1.00 66.67 0.30 4.00 0.5 1.25 78.13 0.32 4.47 0. 35 **high peak voltages cause the thd to increase. d+n to increase
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 5 a p a 2 0 5 7 a thermal considerations linear power amplifiers dissipate a significant amount of heat in the package under normal operating conditions. in the power dissipation vs. output power graph , the apa2057a is operating at a 5v supply and a 4 w speaker that 2w output power peaks are available. the vertical axis gives the information of power dissipation (p d ) in the ic with respect to each output driving power (p o ) on the horizontal axis. this is valuable information when attempting to estimate the heat dissipation of the ic requirements for the amplifier system. using the power dissipation curves for a 5v/4 w system, the internal dissipation in the apa2057a and maximum ambient temperatures is shown in table 3. a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) for tssop-28 package with thermal pad, the thermal resistance ( q ja ) is equal to 45 o c/w. since the maximum junction temperature (t j,max ) of apa2057a is 150 c and the ambient temperature (t a ) is defined by the power system design, the maximum power dissipation that the ic package is able to handle can be obtained from equation10. once the power dissipation is greater than the maximum limit (p d,max ), either the supply voltage (v dd ) must be decreased, the load impedance (r l ) must be increased or the ambient temperature should be reduced. thermal pad considerations the thermal pad must be connected to ground. the package w ith thermal pad of the apa2057a requires sp ecial attention on ther mal design. if the thermal de- sign issues are not properly addressed, the apa2057a 4 w will go into thermal shutdown when driving a 4 w load. the thermal pad on the bottom of the apa2057a should be soldered down to a copper pad on the circuit board. heat can be conducted away from the thermal pad through the copper plane to ambient. if the copper plane is not on the top surface of the circuit board, 8 to 10 vias of 15 mil or smaller in diameter should be used to thermally couple the thermal pad to the bottom plane. for good thermal conduction, the vias must be plated through and solder filled. the copper plane used to conduct heat away from the thermal pad should be as large as practical. if the ambient temperature is higher than 25 c, a larger copper plane or forced-air cooling will be required to keep the apa2057a junction temperature below the thermal shutdown temperature (150 c). in higher ambient temperature, higher airflow rate and/or larger copper area will be required to keep the ic out of thermal shutdown. see demo board circuit layout as an example for pcb layout. power dissipation from equation 9, assuming a 5v- power supply and an 8 w load, must not be greater than the power dissipation that results from the equation 9: (10) ja a max j, max d, t - t = p q power dissipation (cont.) 15 mil 12mil via diameter =25mil x4 via diameter =15mil x10 ground plane for thermalpad 70 mil 70 mil 180 mil 120 mil 2 4 0 m i l exposed for thermal pad connected figure 5: tssop-28p layout recommendation max. t a ( c) peak output power (w ) a verage output power (w) power dissipation ( w/channel ) with thermal pad 2 1.95 1.25 37 2 1.17 1.25 37 2 0.74 1.19 43 2 0.43 1.05 55 2 0.19 0.8 78 table 3: apa20 5 7 a power information , 5v /4 w , stereo , differential mode
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 6 a p a 2 0 5 7 a thermal considerations (cont.) table 3 shows that for some applications, no airflow is required to keep junction temperatures in the specified range. the apa2057a is designed with a thermal shut- do wn protection that turns the device off when the junc tion temperature surpasses 150 c to prevent ic from damage . the information in table 3 was calculated for maximum listen volume with limited distortion. when the output level is reduced, the numbers in the table change significantly. also, using 8 w speakers will dra- matically increase the thermal performance by increasing amplifier efficiency. a p p l i c a t i o n i n f o r m a t i o n ( c o n t . ) 150 - 45(0.8*2) = 78 c (with thermal pad) note: internal dissipation of 0.8w is estimated for a 2w system with 15-db headroom per channel. p - t = t d ja max j, max a, q (11) this parameter is measured with the recommended copper heat sink pattern on a 2-layer pcb, 23cm 2 in 5.7mm *4mm in pcb, 2oz. copper, 100mm 2 coverage. airflow 0 cfm the maximum ambient tem- perature depends on the heat sink ability of the pcb system. to calculate maximum ambient temperatures, first consideration is that the numbers from the dissipation graphs are per channel values, so the dissipation of the ic heat needs to be doubled for two-channel operation. given q ja , the maximum allowable junction temperature (t j,max ), and the total intemal dissipation (p d ), the maximum ambient temperature can be calculated with the following equation. the maximum recommended junction temperature for the apa2057a is 150 c. the internal dissipation figures are taken from the power dissipation vs. output power graph. package q ja tssop - 28 45 c/w tqfn - 28 43 c/w table 4: thermal resistance table
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 7 a p a 2 0 5 7 a p a c k a g e i n f o r m a t i o n t s s o p - 2 8 p note : 1. followed from jedec mo-153 aet. 2. dimension "d" does not include mold flash, protrusions or gate burrs. mold flash, protrusion or gate burrs shall not exceed 6 mil per side. 3. dimension "e1" does not include inter-lead flash or protrusions. inter-lead flash and protrusions shall not exceed 10 mil per side. s y m b o l min. max. 1.20 0.05 0.09 0.20 9.60 9.80 0.15 a a1 c d e e l millimeters b 0.19 0.30 0.65 bsc tssop-28p 0.45 0.75 0.026 bsc min. max. inches 0.047 0.002 0.007 0.012 0.004 0.008 0.378 0.386 0.169 0.177 0.018 0.030 0 0.006 a2 0.80 1.05 4.30 4.50 e1 6.40 bsc 0.252 bsc 0.031 0.041 3.30 d1 0.130 e2 1.50 0.059 7.00 4.00 0.276 0.157 inches 8 0 8 0 0 view a 0 . 2 5 seating plane gauge plane see view a e 1 e b c a 2 a e a 1 l e 2 expos ed pad d1 d
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 8 a p a 2 0 5 7 a p a c k a g e i n f o r m a t i o n t q f n 5 x 5 - 2 8 a d e a1 a3 pin 1 corner e 2 l d2 e b s y m b o l min. max. 0.80 0.00 0.18 0.30 3.50 3.80 0.05 3.50 a a1 b d d2 e e2 e l millimeters a3 0.20 ref tqfn5x5-28 0.35 0.45 3.80 0.008 ref min. max. inches 0.031 0.000 0.007 0.012 0.138 0.150 0.138 0.014 0.018 0.70 0.150 0.028 0.002 5.00 bsc 0.197 bsc 5.00 bsc 0.197 bsc 0.50 bsc 0.020 bsc
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 2 9 a p a 2 0 5 7 a application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 16.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 16.0 ? 0.30 1.75 ? 0.10 7.5 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tssop - 28p 4.0 ? 0.10 8.0 ? 0.10 2.0 ? 0.10 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 6.90 ? 0.20 10.2 ? 0.20 1.50 ? 0.20 application a h t1 c d d w e1 f 330.0 ? 2.00 50 min. 16.4+2.00 - 0.00 13.0+0.50 - 0.20 1.5 min. 20.2 min. 1 2.0 ? 0.30 1.75 ? 0.10 5.5 ? 0.10 p 0 p1 p 2 d 0 d1 t a 0 b 0 k 0 tqfn5x5 - 28 4.0 ? 0.10 12.0 ? 0.10 2.0 ? 0.10 1.5+0.10 - 0.00 1.5 min. 0.6+0.00 - 0.40 5.30 ? 0.20 5.30 ? 0.20 1.30 ? 0.20 (mm) c a r r i e r t a p e & r e e l d i m e n s i o n s package type unit quantity tssop - 28 p tape & reel 2000 tqfn5x5 - 28 tape & reel 2500 d e v i c e s p e r u n i t a e 1 a b w f t p0 od0 b a0 p2 k0 b 0 section b-b section a-a od1 p1 h t1 a d
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 3 0 a p a 2 0 5 7 a test item method description solderability mil - std - 883d - 2003 245 c, 5 sec holt mil - std - 883d - 1005.7 1000 hrs bias @125 c pct jesd - 22 - b,a102 168 hrs, 100 % rh, 121 c tst mil - std - 883d - 1011.9 - 65 c~150 c, 200 cycles esd mil - std - 883d - 3015.7 vhbm > 2kv, vmm > 200v latch - up jesd 78 10ms, 1 tr > 100ma r e f l o w c o n d i t i o n ( i r / c o n v e c t i o n o r v p r r e f l o w ) c l a s s i f i c a t i o n r e f l o w p r o f i l e s profile feature sn - pb eutectic assembly pb - free assembly average ramp - up rate (t l to t p ) 3 c/second max. 3 c/second max. preheat - temperature min (tsmin) - temperature max (tsmax) - time (min to max) (ts) 100 c 150 c 60 - 120 seconds 150 c 200 c 60 - 180 seconds time maintained above: - temperature (t l ) - time (t l ) 183 c 60 - 150 seconds 217 c 60 - 150 seconds peak /classification temperature (tp) see table 1 see table 2 time within 5 c of actual peak temperature (tp) 10 - 30 seconds 20 - 40 seconds ramp - down rate 6 c/sec ond max. 6 c/second max. time 25 c to peak temperature 6 minutes max. 8 minutes max. notes: all temperatures refer to topside of the package. measured on the body surface. t 25 c to peak tp ramp-up t l ramp-down ts preheat tsmax tsmin t l t p 25 t e m p e r a t u r e time critical zone t l to t p r e l i a b i l i t y t e s t p r o g r a m
c o p y r i g h t ? a n p e c e l e c t r o n i c s c o r p . r e v . a . 1 - a u g . , 2 0 0 7 w w w . a n p e c . c o m . t w 3 1 a p a 2 0 5 7 a table 2. pb - free process ? package classification reflow temperatures package thickness volume mm 3 <350 volume mm 3 350 - 2000 volume mm 3 >2000 <1.6 mm 260 +0 c* 260 +0 c* 260 +0 c* 1.6 mm ? 2.5 mm 260 +0 c* 250 +0 c* 245 +0 c* 3 2.5 mm 250 +0 c* 245 +0 c* 245 +0 c* * tolerance: the device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means peak reflow temperature +0 c. for example 260 c+0 c) at the rated msl level. c u s t o m e r s e r v i c e table 1. snpb eutectic process ? package peak reflow temperature s package thickness volume mm 3 <350 volume mm 3 3 350 <2.5 mm 240 +0/ - 5 c 225 +0/ - 5 c 3 2.5 mm 225 +0/ - 5 c 225 +0/ - 5 c c l a s s i f i c a t i o n r e f l o w p r o f i l e s ( c o n t . ) a n p e c e l e c t r o n i c s c o r p . head office : no.6, dusing 1st road, sbip, hsin-chu, taiwan, r.o.c. tel : 886-3-5642000 fax : 886-3-5642050 t a i p e i b r a n c h : 2 f , n o . 1 1 , l a n e 2 1 8 , s e c 2 j h o n g s i n g r d . , s i n d i a n c i t y , t a i p e i c o u n t y 2 3 1 4 6 , t a i w a n t e l : 8 8 6 - 2 - 2 9 1 0 - 3 8 3 8 f a x : 8 8 6 - 2 - 2 9 1 7 - 3 8 3 8


▲Up To Search▲   

 
Price & Availability of APA2057AQBI-TRL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X